-16t^2=-1/2

Simple and best practice solution for -16t^2=-1/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2=-1/2 equation:



-16t^2=-1/2
We move all terms to the left:
-16t^2-(-1/2)=0
We get rid of parentheses
-16t^2+1/2=0
We multiply all the terms by the denominator
-16t^2*2+1=0
Wy multiply elements
-32t^2+1=0
a = -32; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-32)·1
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-32}=\frac{0-8\sqrt{2}}{-64} =-\frac{8\sqrt{2}}{-64} =-\frac{\sqrt{2}}{-8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-32}=\frac{0+8\sqrt{2}}{-64} =\frac{8\sqrt{2}}{-64} =\frac{\sqrt{2}}{-8} $

See similar equations:

| x-9/6=2x-4/5 | | 2=-4p+5p | | -25=6-(3x+10) | | c➗7=29 | | 21​(6x−10) = 7x+15= 7x+15 | | (1)/(8))^(3x-8)=2^(5x+1) | | 7x²-252=0 | | 23=8+3u | | (2x+15)+67+90=180 | | {1/2}z=5 | | (5x+6)+43+106=180 | | (4x+19)+39+62=180 | | b+10b+2b+17=6 | | 13m=20 | | 60=20-4x | | 3+u6=11 | | 32-4=2h+12-6h | | 5x-10-2x=2 | | -9+7x=8x+-1 | | m−17/11=8 | | 15=r=13 | | 18=12+2e | | 2x+7=1/2(2x-6) | | 11+9=12x8 | | 11+9=12x-8 | | 9x/27=2/9 | | 3x-13=8x-7 | | 12=5x–18 | | 12=4d+5 | | 2y^2-11+12=0 | | 1+7x8=57 | | −5z​−37=  −18 |

Equations solver categories